The climate-extended credit risk model

Josselin Garnier (Ecole Polytechnique)

Clifirium - June 2, 2022

Work triggered by discussions with the association Green RWA (Anne Gruz, Jean-Baptiste Gaudemet)
see arXiv:2103.03275

Climate-Extended Risk Model (CERM)

Objectives:

- Determine the loss distribution of a credit portfolio.
 - The portfolio is made of loans from a large number of borrowers.
 - The loss of the portfolio L is the sum of the random losses of the borrowers.
 - \hookrightarrow *L* is random. We look for the expected and unexpected losses (expectation and quantile).
- Propose a credit risk model which extends the model defined by the Basel Committee to climate (physical and transition) risks.
- Ingredients:
 - Credit/climate rating, (IPCC) scenarios.
 - Initial loan distribution, reloading of outstanding loans.

Expected loss of the portfolio

• For the qth borrower, the expected loss $(EL^{(q)})$ can be expressed in terms of probability of default $(PD^{(q)})$, loss given default $(LGD^{(q)})$, exposure at default $(EAD^{(q)})$:

$$\mathrm{EL}^{(q)} = \mathrm{PD}^{(q)} \times \mathrm{LGD}^{(q)} \times \mathrm{EAD}^{(q)}$$

- ullet The expected loss $L^{
 m e}=\mathbb{E}[L]$ of the portfolio
 - is the sum of the expected individual losses,
 - can be expressed by grouping the borrowers:

The borrowers belong to different groups $g=1,\ldots,G$, that represent

- geographic regions,
- economic sectors,
- climate risk mitigation and adaptation strategies,
- collateral types.

The borrowers have different ratings $i=1,\ldots,K-1$ at time 0 (the rating K is default).

Expected loss of the portfolio

Expected loss L^{e} at the time horizon T:

$$\begin{split} L^{\text{e}} &= \sum_{t=1}^{T} L_{t}^{\text{e}}, \\ L_{1}^{\text{e}} &= \sum_{g=1}^{G} \sum_{i=1}^{K-1} (M_{g,1})_{iK} \text{LGD}_{g,i,1} \text{EAD}_{g,i,1}, \\ L_{t}^{\text{e}} &= \sum_{g=1}^{G} \sum_{i,j=1}^{K-1} (M_{g,1} \cdots M_{g,t-1})_{ij} (M_{g,t})_{jK} \text{LGD}_{g,j,t} \text{EAD}_{g,i,t}, \text{ for } t \geq 2. \end{split}$$

Here

- $M_{g,t}$: unconditional $K \times K$ migration matrix,
- $\mathrm{EAD}_{g,i,t}$: Exposition At Default, total exposure at default (in case of default at time t) for all borrowers in group g and with initial rating i,
- $LGD_{g,j,t}$: Loss Given Default,

depend on group $g \in \{1, \dots, G\}$ and time $t \in \{1, \dots, T\}$.

J. Garnier CERM June 2022 4 / 16

Expected loss of the portfolio: Migration matrix

initial rating	credit rating at year-end							
	AAA	AA	Α	BBB	BB	В	CCC	Default
AAA	0,9112	0,0800	0,0070	0,0010	0,0005	0,0001	0,0001	0,0001
AA	0,0070	0,9103	0,0747	0,0060	0,0010	0,0007	0,0002	0,0001
Α	0,0011	0,0234	0,9154	0,0508	0,0061	0,0026	0,0001	0,0005
BBB	0,0002	0,0030	0,0565	0,8798	0,0475	0,0105	0,0010	0,0015
BB	0,0001	0,0010	0,0055	0,0777	0,8177	0,0795	0,0085	0,0100
В	0,0000	0,0005	0,0025	0,0045	0,0700	0,8350	0,0375	0,0500
CCC	0,0000	0,0001	0,0010	0,0030	0,0259	0,1200	0,6500	0,2000
Default	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	1,0000

1-year migration matrix with K=8.

Each row corresponds to an initial rating.

Each column corresponds to a rating at the end of one year.

As "Default" is absorbing, the last line is of the form $(0, \dots, 0, 1)$.

Unexpected loss of the portfolio: The need for a credit risk model

- The expected loss $L^{e} = \mathbb{E}[L]$ of the portfolio is the sum of the expected individual losses.
- The unexpected loss is a quantile $L^{\rm u}$ of the loss of the portfolio:

$$\mathbb{P}(L \le L^{\mathrm{u}}) = 0.999$$
 (or 0.99 or 0.9)

The quantile of a sum is not the sum of the quantiles.

 \hookrightarrow A model is needed for the dependence structure.

J. Garnier

Asymptotic Single Risk Factor (ASRF) model

The ASRF model

- is a default-mode (Merton-type) model proposed by Vasicek in 1991,
- has played a central role for its regulatory applications in the Basel Capital Accord Framework,
- is based on the following assumptions:
- a unique systematic risk factor (single-factor model): economic risk
- \hookrightarrow the losses of the borrowers are correlated only through one systematic factor,
- an infinitely granular portfolio (characterized by a large number of small size loans)
- \hookrightarrow diversification of the idiosyncratic risks, but not of the systematic risk,
- a dependence structure described by a Gaussian copula
- \hookrightarrow the most important theoretical hypothesis,
 - gives closed-form expressions for the expected and unexpected losses.

J. Garnier CERM June 2022 7 / 10

Asymptotic Single Risk Factor (ASRF) model

• The qth borrower defaults before time t if a latent variable $X_t^{(q)}$ (normalized asset) goes below a threshold value:

$$X_t^{(q)} = a^{(q)}Z_t + \sqrt{1 - (a^{(q)})^2}\varepsilon_t^{(q)}$$

where

- Z_t = systematic (economic) risk factor,
- $\varepsilon_t^{(q)} = \text{idiosyncratic factor},$
- $a^{(q)} = a_g$ factor loading (Basel: constant; here: depends on group).

Gaussian copula: $(Z_t, \varepsilon_t^{(1)}, \varepsilon_t^{(2)}, \ldots)$ are i.i.d. standard Gaussian.

 The threshold values are obtained from the group-dependent unconditional migration matrices

$$z_{g,ij} = \Phi^{-1}\Big(\sum_{i'=i}^K (\mathbf{M}_g)_{ij'}\Big), \qquad \mathbb{P}\big(X_t^{(q)} \leq z_{g,ij}\big) = \Phi(z_{g,ij})$$

• The group-dependent conditional migration matrix is

$$\sum_{i'=i}^{K} (\mathbf{M}_{g}(Z_{t}))_{ij'} = \mathbb{P}\big(X_{t}^{(q)} \leq z_{g,ij}|Z_{t}\big) = \Phi\Big(\frac{z_{g,ij} - a_{g}Z_{t}}{\sqrt{1 - (a_{g})^{2}}}\Big)$$

Climate-Extended Risk Model (CERM) - principle

The Climate-extended model

- is a Multi-Factor Merton-type model,
- is based on the following assumptions:
- several systematic risk factors (multi-factor model): economic, physical, transition risks,
- an infinitely granular portfolio (characterized by a large number of small size loans),
- 3 a dependence structure described by a Gaussian copula,
- gives efficient Monte-Carlo estimations of the expected and unexpected losses.

Basic references:

- Vasicek Model
 Vasicek, O., The distribution of loan portfolio value, Risk, Dec. 2002.
- Multi-Factor Merton Model
 Pykhtin, M., Multi-factor adjustment, Risk, March 2004.

Climate-Extended Risk Model (CERM) - ingredients

Additional ingredients (compared to ASRF):

- Idiosyncratic risks, economic risk are stationary.
- Physical and transition risks evolve in time.
- \hookrightarrow Climate scenarios are needed for the intensities of the systematic risk factors.
 - Physical risk factors can be regional.
 - Systematic risk factors can be correlated.
 For instance, anti-correlation between economic and transition risks or correlation between regional physical risks.
- \hookrightarrow Correlation structure between systematic risk factors is needed.
 - Expositions of borrowers to systematic risk factors (micro-correlations) may evolve in time (by mitigation strategies).
- \hookrightarrow Micro-correlations w.r.t. systematic risk factors are needed for all groups.
- The historical unconditional migration matrices are used at t = 0.
 ⇒ Same historical migration matrices as for ASRF model are needed.
- Note: The unconditional migration matrices evolve in time due to the non-stationarity of the physical and transition risks.

Climate-Extended Risk Model (CERM) - structure

The qth borrower defaults before time t if a latent variable $X_t^{(q)}$ (normalized asset) goes below a threshold value:

$$X_t^{(q)} = a_t^{(q)} \cdot Z_t + \sqrt{1 - a_t^{(q)} \cdot \mathbf{C} a_t^{(q)}} \varepsilon_t^{(q)}$$

where

 $Z_t = \text{systematic risk factors (with correlation matrix } \mathbf{C}),$

 $\varepsilon_t^{(q)} = \text{idiosyncratic factor,}$

 $a_t^{(q)}=$ factor loadings; they depend on time-dependent macro-correlations and time- and group-dependent micro-correlations.

- macro-correlations: intensities of the systematic risk factors, expressed in same units (impact to GDP growth rate for instance);
 - constant for economic risk;
 - given by (IPCC) carbon emission pathway for transition risk;
 - given by (IPCC) GDP growth rate assessment for physical risk.
- micro-correlations: expositions of borrowers to systematic risk factors;
 given by climate ratings.

Climate-Extended Risk Model (CERM) - results

Conditional loss given the systematic risk factors $oldsymbol{Z} = (oldsymbol{Z}_1, \dots, oldsymbol{Z}_T)$:

$$L(\boldsymbol{Z}) = \sum_{t=1}^{T} L_t(\boldsymbol{Z})$$

$$L_1(\boldsymbol{Z}) = \sum_{g=1}^{G} \sum_{i=1}^{K-1} (M_{g,1}(\boldsymbol{Z}_1))_{iK} \mathrm{LGD}_{g,i,1}(\boldsymbol{Z}_1) \mathrm{EAD}_{g,i,1}$$

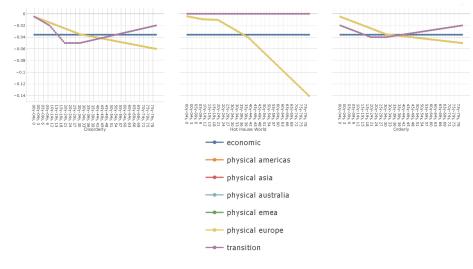
$$L_t(\boldsymbol{Z}) = \sum_{g=1}^{G} \sum_{i,j=1}^{K-1} (M_{g,1}(\boldsymbol{Z}_1) \cdots M_{g,t-1}(\boldsymbol{Z}_{t-1}))_{ij} (M_{g,t}(\boldsymbol{Z}_t))_{jK} \text{LGD}_{g,j,t}(\boldsymbol{Z}_t) \text{EAD}_{g,i,t}$$

for $t \ge 2$. Here

- Explicit formulas are available for all terms.
- $\bullet L^{e} = \mathbb{E}[L(Z)].$
- L^{u} such that $\mathbb{P}(L(Z) \leq L^{\mathrm{u}}) = 99.9\%$ (or 99% or 90%).
- Monte Carlo simulations can be carried out to estimate L^u or the distribution of L(Z).
- Sensitivity indices (w.r.t. groups) can be estimated.

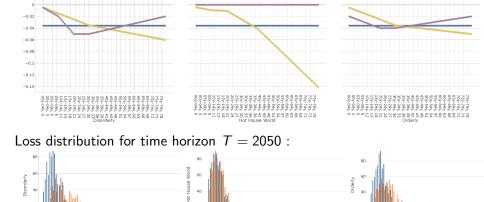
Climate-Extended Risk Model (CERM) - illustrations

Three climate scenarios (macro-correlations) [IPCC]:



[Implementation by Anne Gruz].

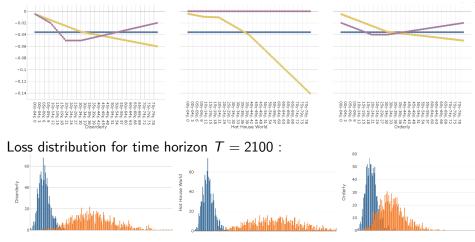
Climate-Extended Risk Model (CERM) - illustrations



Blue: no physical/transition risk; orange: with physical/transition risks.

[Implementation by Anne Gruz].

Climate-Extended Risk Model (CERM) - illustrations



Blue: no physical/transition risk; orange: with physical/transition risks.

[Implementation by Anne Gruz].

J. Garnier CERM June 2022 1

Climate-Extended Risk Model (CERM) - summary

Objectives:

- Determine the loss distribution of a credit portfolio.
- Propose a credit risk model which extends the model defined by the Basel Committee to climate (physical and transition) risks.

Ingredients:

- Credit/climate rating, (IPCC) scenarios.
- Initial loan distribution, reloading of outstanding loans.

Results:

- Measure the incremental cost of risk and capital to inform credit allocation decisions.
- Optimize the overall climate strategy, including financing existing clients' adaptation/mitigation plans and shifting assets to green lenders and green collateral.